AVL deletion
// AvlTree class // // CONSTRUCTION: with no initializer // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // void remove( x ) --> Remove x (unimplemented) // boolean contains( x ) --> Return true if x is present // boolean remove( x ) --> Return true if x was present // Comparable findMin( ) --> Return smallest item // Comparable findMax( ) --> Return largest item // boolean isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void printTree( ) --> Print tree in sorted order // ******************ERRORS******************************** // Throws UnderflowException as appropriate /** * Implements an AVL tree. * Note that all "matching" is based on the compareTo method. * @author Mark Allen Weiss */ public class AvlTree<AnyType extends Comparable<? super AnyType>> { /** * Construct the tree. */ public AvlTree( ) { root = null; } /** * Insert into the tree; duplicates are ignored. * @param x the item to insert. */ public void insert( AnyType x ) { root = insert( x, root ); } /** * Remove from the tree. Nothing is done if x is not found. * @param x the item to remove. */ public void remove( AnyType x ) { root = remove( x, root ); } /** * Internal method to remove from a subtree. * @param x the item to remove. * @param t the node that roots the subtree. * @return the new root of the subtree. */ private AvlNode<AnyType> remove( AnyType x, AvlNode<AnyType> t ) { if( t == null ) return t; // Item not found; do nothing int compareResult = x.compareTo( t.element ); if( compareResult < 0 ) t.left = remove( x, t.left ); else if( compareResult > 0 ) t.right = remove( x, t.right ); else if( t.left != null && t.right != null ) // Two children { t.element = findMin( t.right ).element; t.right = remove( t.element, t.right ); } else t = ( t.left != null ) ? t.left : t.right; return balance( t ); } /** * Find the smallest item in the tree. * @return smallest item or null if empty. */ public AnyType findMin( ) { if( isEmpty( ) ) throw new UnderflowException( ); return findMin( root ).element; } /** * Find the largest item in the tree. * @return the largest item of null if empty. */ public AnyType findMax( ) { if( isEmpty( ) ) throw new UnderflowException( ); return findMax( root ).element; } /** * Find an item in the tree. * @param x the item to search for. * @return true if x is found. */ public boolean contains( AnyType x ) { return contains( x, root ); } /** * Make the tree logically empty. */ public void makeEmpty( ) { root = null; } /** * Test if the tree is logically empty. * @return true if empty, false otherwise. */ public boolean isEmpty( ) { return root == null; } /** * Print the tree contents in sorted order. */ public void printTree( ) { if( isEmpty( ) ) System.out.println( "Empty tree" ); else printTree( root ); } private static final int ALLOWED_IMBALANCE = 1; // Assume t is either balanced or within one of being balanced private AvlNode<AnyType> balance( AvlNode<AnyType> t ) { if( t == null ) return t; if( height( t.left ) - height( t.right ) > ALLOWED_IMBALANCE ) if( height( t.left.left ) >= height( t.left.right ) ) t = rotateWithLeftChild( t ); else t = doubleWithLeftChild( t ); else if( height( t.right ) - height( t.left ) > ALLOWED_IMBALANCE ) if( height( t.right.right ) >= height( t.right.left ) ) t = rotateWithRightChild( t ); else t = doubleWithRightChild( t ); t.height = Math.max( height( t.left ), height( t.right ) ) + 1; return t; } public void checkBalance( ) { checkBalance( root ); } private int checkBalance( AvlNode<AnyType> t ) { if( t == null ) return -1; if( t != null ) { int hl = checkBalance( t.left ); int hr = checkBalance( t.right ); if( Math.abs( height( t.left ) - height( t.right ) ) > 1 || height( t.left ) != hl || height( t.right ) != hr ) System.out.println( "OOPS!!" ); } return height( t ); } /** * Internal method to insert into a subtree. * @param x the item to insert. * @param t the node that roots the subtree. * @return the new root of the subtree. */ private AvlNode<AnyType> insert( AnyType x, AvlNode<AnyType> t ) { if( t == null ) return new AvlNode<>( x, null, null ); int compareResult = x.compareTo( t.element ); if( compareResult < 0 ) t.left = insert( x, t.left ); else if( compareResult > 0 ) t.right = insert( x, t.right ); else ; // Duplicate; do nothing return balance( t ); } /** * Internal method to find the smallest item in a subtree. * @param t the node that roots the tree. * @return node containing the smallest item. */ private AvlNode<AnyType> findMin( AvlNode<AnyType> t ) { if( t == null ) return t; while( t.left != null ) t = t.left; return t; } /** * Internal method to find the largest item in a subtree. * @param t the node that roots the tree. * @return node containing the largest item. */ private AvlNode<AnyType> findMax( AvlNode<AnyType> t ) { if( t == null ) return t; while( t.right != null ) t = t.right; return t; } /** * Internal method to find an item in a subtree. * @param x is item to search for. * @param t the node that roots the tree. * @return true if x is found in subtree. */ private boolean contains( AnyType x, AvlNode<AnyType> t ) { while( t != null ) { int compareResult = x.compareTo( t.element ); if( compareResult < 0 ) t = t.left; else if( compareResult > 0 ) t = t.right; else return true; // Match } return false; // No match } /** * Internal method to print a subtree in sorted order. * @param t the node that roots the tree. */ private void printTree( AvlNode<AnyType> t ) { if( t != null ) { printTree( t.left ); System.out.println( t.element ); printTree( t.right ); } } /** * Return the height of node t, or -1, if null. */ private int height( AvlNode<AnyType> t ) { return t == null ? -1 : t.height; } /** * Rotate binary tree node with left child. * For AVL trees, this is a single rotation for case 1. * Update heights, then return new root. */ private AvlNode<AnyType> rotateWithLeftChild( AvlNode<AnyType> k2 ) { AvlNode<AnyType> k1 = k2.left; k2.left = k1.right; k1.right = k2; k2.height = Math.max( height( k2.left ), height( k2.right ) ) + 1; k1.height = Math.max( height( k1.left ), k2.height ) + 1; return k1; } /** * Rotate binary tree node with right child. * For AVL trees, this is a single rotation for case 4. * Update heights, then return new root. */ private AvlNode<AnyType> rotateWithRightChild( AvlNode<AnyType> k1 ) { AvlNode<AnyType> k2 = k1.right; k1.right = k2.left; k2.left = k1; k1.height = Math.max( height( k1.left ), height( k1.right ) ) + 1; k2.height = Math.max( height( k2.right ), k1.height ) + 1; return k2; } /** * Double rotate binary tree node: first left child * with its right child; then node k3 with new left child. * For AVL trees, this is a double rotation for case 2. * Update heights, then return new root. */ private AvlNode<AnyType> doubleWithLeftChild( AvlNode<AnyType> k3 ) { k3.left = rotateWithRightChild( k3.left ); return rotateWithLeftChild( k3 ); } /** * Double rotate binary tree node: first right child * with its left child; then node k1 with new right child. * For AVL trees, this is a double rotation for case 3. * Update heights, then return new root. */ private AvlNode<AnyType> doubleWithRightChild( AvlNode<AnyType> k1 ) { k1.right = rotateWithLeftChild( k1.right ); return rotateWithRightChild( k1 ); } private static class AvlNode<AnyType> { // Constructors AvlNode( AnyType theElement ) { this( theElement, null, null ); } AvlNode( AnyType theElement, AvlNode<AnyType> lt, AvlNode<AnyType> rt ) { element = theElement; left = lt; right = rt; height = 0; } AnyType element; // The data in the node AvlNode<AnyType> left; // Left child AvlNode<AnyType> right; // Right child int height; // Height } /** The tree root. */ private AvlNode<AnyType> root; // Test program public static void main( String [ ] args ) { AvlTree<Integer> t = new AvlTree<>( ); final int SMALL = 40; final int NUMS = 1000000; // must be even final int GAP = 37; System.out.println( "Checking... (no more output means success)" ); for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS ) { // System.out.println( "INSERT: " + i ); t.insert( i ); if( NUMS < SMALL ) t.checkBalance( ); } for( int i = 1; i < NUMS; i+= 2 ) { // System.out.println( "REMOVE: " + i ); t.remove( i ); if( NUMS < SMALL ) t.checkBalance( ); } if( NUMS < SMALL ) t.printTree( ); if( t.findMin( ) != 2 || t.findMax( ) != NUMS - 2 ) System.out.println( "FindMin or FindMax error!" ); for( int i = 2; i < NUMS; i+=2 ) if( !t.contains( i ) ) System.out.println( "Find error1!" ); for( int i = 1; i < NUMS; i+=2 ) { if( t.contains( i ) ) System.out.println( "Find error2!" ); } } }
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment