Difference between er model and relational model in dbms
Data models define how the logical structure of a database is modeled. Data Models are fundamental
entities to introduce abstraction in a DBMS. Data models define how data is connected to each other and how they are processed and stored inside the system.
The very first data model could be flat data-models, where all the data used are to be kept in the same plane. Earlier data models were not so scientific, hence they were prone to introduce lots of duplication and update anomalies.
Entity-Relationship Model
Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships among them. While formulating real-world scenario into the database model, the ER Model creates entity set, relationship set, general attributes and constraints.
ER Model is best used for the conceptual design of a database.
ER Model is based on −
Entities and their attributes.
Relationships among entities.
These concepts are explained below.
Entity − An entity in an ER Model is a real-world entity having properties called attributes. Every attribute is defined by its set of values called domain. For example, in a school database, a student is considered as an entity. Student has various attributes like name, age, class, etc.
Relationship − The logical association among entities is called relationship. Relationships are mapped with entities in various ways. Mapping cardinalities define the number of association between two entities.
Mapping cardinalities −
one to one
one to many
many to one
many to many
Relational Model
The most popular data model in DBMS is the Relational Model. It is more scientific a model than others. This model is based on first-order predicate logic and defines a table as an n-ary relation.
Relational Model Table
The main highlights of this model are −
Data is stored in tables called relations.
Relations can be normalized.
In normalized relations, values saved are atomic values.
Each row in a relation contains a unique value.
Each column in a relation contains values from a same domain.
Entity Relationship Diagram defines the relationship between entities and their attributes. In example, an ERD contains many-to-many relationships and do not include foreign keys. They are implied. In an ERD, we are simply visualising the entities, their attributes, and the relation between them. we dont care about where foreign keys go or how to implement that many-to-many relationship. (but we do underline primary keys!)
In a Relational Model we are referring to an implementation of our model. At this point we should be clear about the formats of our attributes, the foreign keys we use, and the linking tables we might need to stitch entities together. A relational model is basically a model of a possible database implementation.
In short, an ERD is an abstract concept of our database, it speaks in entities and attributes, an entity model. A relational model defines formats and relations in a way a database could understand, a data model.
entities to introduce abstraction in a DBMS. Data models define how data is connected to each other and how they are processed and stored inside the system.
The very first data model could be flat data-models, where all the data used are to be kept in the same plane. Earlier data models were not so scientific, hence they were prone to introduce lots of duplication and update anomalies.
Entity-Relationship Model
Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships among them. While formulating real-world scenario into the database model, the ER Model creates entity set, relationship set, general attributes and constraints.
ER Model is best used for the conceptual design of a database.
ER Model is based on −
Entities and their attributes.
Relationships among entities.
These concepts are explained below.
Entity − An entity in an ER Model is a real-world entity having properties called attributes. Every attribute is defined by its set of values called domain. For example, in a school database, a student is considered as an entity. Student has various attributes like name, age, class, etc.
Relationship − The logical association among entities is called relationship. Relationships are mapped with entities in various ways. Mapping cardinalities define the number of association between two entities.
Mapping cardinalities −
one to one
one to many
many to one
many to many
Relational Model
The most popular data model in DBMS is the Relational Model. It is more scientific a model than others. This model is based on first-order predicate logic and defines a table as an n-ary relation.
Relational Model Table
The main highlights of this model are −
Data is stored in tables called relations.
Relations can be normalized.
In normalized relations, values saved are atomic values.
Each row in a relation contains a unique value.
Each column in a relation contains values from a same domain.
Entity Relationship Diagram defines the relationship between entities and their attributes. In example, an ERD contains many-to-many relationships and do not include foreign keys. They are implied. In an ERD, we are simply visualising the entities, their attributes, and the relation between them. we dont care about where foreign keys go or how to implement that many-to-many relationship. (but we do underline primary keys!)
In a Relational Model we are referring to an implementation of our model. At this point we should be clear about the formats of our attributes, the foreign keys we use, and the linking tables we might need to stitch entities together. A relational model is basically a model of a possible database implementation.
In short, an ERD is an abstract concept of our database, it speaks in entities and attributes, an entity model. A relational model defines formats and relations in a way a database could understand, a data model.
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment